
Chombo-Crunch and VisIt for carbon
sequestration and in-transit data analysis
using burst buffers

Andrey Ovsyannikov (NERSC),
Melissa Romanus (Rutgers U.),

Brian Van Straalen (LBL), Gunther Weber (LBL),
David Trebotich (LBL)

April 18-21, 2016
Glendale, AZ

Outline

•  Motivation
•  Conventional I/O and alternatives
•  Burst Buffer architecture
•  Proposed approach: asynchronous workflow
•  Chombo-Crunch example
•  Results
•  Conclusions

Motivation

•  Growing amount of data at an unprecedented rate
•  Insufficient bandwidth of persistent storage media. Growing

gap between computation and I/O rates
•  Scientific workflows are getting more complex. Exchange of

data between different workflow components is getting
challenging

Need of alternatives to conventional post-processing approach

Emerging exascale systems one has to deal with:

Different data analysis methods

Comparison of data analysis execution methods (Prabhat & Koziol, 2015)

Burst Buffer architecture

•  Current configuration: 850TB on 144 BB nodes (288 SSDs)
•  >1.5 PB total coming with Cori Phase 2

Proposed in-transit workflow

n timesteps

SW Output / Data Out

Input
Config

VISUALIZATION
VisIt

Input Data / Program Flow

Burst Buffer

1/
10

 ts

Img File
.png

LEGEND
Software File

user
config via

python
script

MAIN SIMULATION
Chombo-Crunch

.chk
.plt

1/
10

0 t
s

O(100) GB
.chk

PFS
Lustre

per tim
e step

1+ per .plt file

Chkpt Manager
Detects Large .chk

Issues asynch stage out

DataWarp SW
Stage Out

‘frame’ for movie

may be >1 movie

Multiple
.png Files

Movie Encoder
Wait for N .pngs, encode,

place result in DRAM, at end,
concatenate movies

Intermediate
.ts Movies

Local DRAM

Final
Movie
.mp4

DataWarp SW

Stage Out

Workflow components:
q Chombo-Crunch (subsurface simulator)
q VisIt (visualization and analytics)
q Encoder
q Checkpoint manager

Slurm implementation
#!/bin/bash
#SBATCH --nodes=1040
#SBATCH --job-name=shale
#DW jobdw capacity=200TiB access_mode=striped type=scratch
#DW stage_in type=file source=/pfs/restart.hdf5 destination
 =$DW_JOB_STRIPED/restart.hdf5
Load required modules
module load visit
ScratchDir="$SLURM_SUBMIT_DIR/_output.$SLURM_JOBID"
BurstBufferDir="${DW_JOB_STRIPED}"
mkdir $ScratchDir
stripe_large $ScratchDir
NumTimeSteps=2000
EncoderInt=120
RestartFileName="restart.hdf5"
ProgName="chombocrunch3d.Linux.64.CC.ftn.OPTHIGH.MPI.PETSC.
ex"
ProgArgs=chombocrunch.inputs
ProgArgs="$ProgArgs check_file=${BurstBufferDir}check
 plot_file=${BurstBufferDir}plot pfs_path_to_checkpoint=
 ${ScratchDir}/check restart_file=${BurstBufferDir}${
 RestartFileName} max_step=$NumTimeSteps"
Launch Chombo-Crunch
srun -N 1024 -n 32768 $ProgName $ProgArgs > log 2>&1 &
Launch VisIt
visit -l srun -nn 16 -np 512 -cli -nowin -s VisIt.py &
Launch Encoder
./encoder.sh -pngpath $BurstBufferDir -endts $NumTimeSteps
 -i $EncoderInt &
wait
Stage-out movie file from Burst Buffer
#DW stage_out type=file source=$DW_JOB_STRIPED/movie.mp4
 destination=/pfs/movie.mp4

Run each component

Stage output file to PFS

Stage in restart file

Allocate BB capacity

Chombo-Crunch
Simulates pore scale reactive transport
processes associated with carbon
sequestration

Applied to other subsurface science
areas:
•  Hydrofracturing
•  Used fuel disposition (Hanford salt

repository modeling)

Extended to engineering applications:
•  Lithium ion battery electrodes
•  Paper manufacturing (hpc4mfg)

pH on crushed calcite in capillary tube

O2 diffusion in Kansas aggregate
soil

Flooding in fractured Marcellus
shale

Electric potential in Li-ion electrode

Transport in fractured
dolomite

paper

felt

Paper re-wetting

I/O bandwidth study

3.99x

2.84x

3.06x

2.89x

3.52x

4.07x

5.73x

b
a

n
d

w
id

th
 (

G
iB

/s
)

file size (GiB)

number of Burst Buffer nodes

Lustre

Burst Buffer

 0.5

 1

 2

 4

 8

 16

 32

 64

 8 16 32 64 128 256 512

 1 2 4 8 16 32 64

b
a

n
d

w
id

th
 (

G
iB

/s
)

number of Burst Buffer nodes

8192 MPI ranks, 118 GiB plotfile

512 MPI ranks, 7.4 GiB plotfile

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

Collective write to shared file using HDF5 library

Scaling study for 512 to 32768 MPI tasks for I/O.
Number of compute nodes to BB nodes is fixed
at 16:1.

Optimal bandwidth study at 2 scenarios.

In-transit visualization: Example 1
Reactive transport in dolomite:
Simulation performed on Cori Phase 1: 512 cores used by Chombo-Crunch,
64 cores by VisIt, 144 Burst Buffer nodes for I/O. Plot file size 8GB

Wall clock time history

w
a
llc

lo
ck

 t
im

e
 (

se
c)

timestep

solution + I/O time

plotfile instant

checkpoint instant

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8400 8600 8800 9000 9200

With I/O to Burst Buffer With I/O to Lustre PFS

In-transit visualization: Example 2
Reactive transport in shale
Simulation performed on Cori Phase 1: 32768 cores used by Chombo-Crunch,
512 cores by VisIt, 144 Burst Buffer nodes for I/O. Plot file size 290GB

Compute time vs I/O time

Lustre BB Lustre BB Lustre BB

n
o
rm

a
liz

e
d
 r

u
n
 t
im

e

Chombo-Crunch I/O time

Chombo-Crunch compute time

61% 13.5% 13.6% 1.5% 1.8% 0.2%

I/O pattern (a)
I/O pattern (b)

I/O pattern (c)

(a)  High intensity I/O: write plot file every timestep, checkpointing every 10 timesteps
(b)   Medium intensity I/O: write plot file every 10 timesteps, checkpointing every 100 timesteps
(c)  Low intensity I/O: write plot file every 100 timesteps, checkpointing every 500 timesteps

Summary for 2 benchmarks

Conclusions
q  In-transit workflow has been proposed and its performance has

been assessed on a couple of application examples of Chombo-
Crunch subsurface simulation code

q  First results show definite I/O improvement and reduction of the
overall end-to-end run time

q  Utilizing NVRAM memory allows Chombo-Crunch to move to
every timestep “postprocessing” while only changing roughly
20 lines of source code in Chombo

q  Future work:
•  Dynamic component load balancing
•  Managing burst buffer capacity
•  Component signaling
•  Including additional components into workflow (e.g. pore

graph extractor)

compute	nodes	

BB	nodes	

LNET/DVS	
IO	nodes	

service	nodes	

Burst Buffer Architecture Reality
BB	nodes	sca;ered	throughout	HSN	fabric	

2	BB	blades/chassis	(12	nodes/cabinet)	in	Phase	I	

Photo from
Glenn Lockwood

